

Module SEPR

Year 2019/20

Assessment 3

Team Early Bird

Members James Little, Ryan Vint, Adam Lynch, Georgina Martin, Kheng Yeoh,
Tanay Malde

Deliverable Implementation Report

Changes to previous software:

Change Items Affected Justification

Particles able to attack all
entities

Particle, Patrol, Fortress,
Firetruck

Patrols and fire trucks were
required to be able to attack
each other. Therefore, in
order to reuse the particle
class it had to be changed
to work with all entities as
opposed to only fire trucks
and fortresses.

Method to locate nearest fire
truck to a particular tile

FireStation In order for patrols to target
the nearest fire truck when
attacking and following
them. Must therefore also
pass in the game screen in
order to use the obstacle
grid when pathfinding.

Both fire truck and fortress
now extend entity

Fire truck, Fortress To make code more concise
as well as create a code
structure that allows one to
iterate over entities.

Additions for implementation of requirements:

Change Items Affected Justification

Implemented
FR_WATER
requirement

Additions to
GameScreen
class and fortress
class

As stated by the FR_WATER requirement, the
alien fortresses must take more water to destroy
over time. We added this functionality by having a
downwards counting timer which, when it hit 0,
increased the health of the fortress (thus the
amount of water it takes to destroy them) in
addition to increasing damage, attack rate and
range to increase the difficulty of the game.

Implemented an
entity class

Entity, Fire Truck,
Unit, Fortress

Needed a class to hold parameters such a
position, HP and game Screen which were
common to many classes.

Implemented a
unit class

Unit, Patrol Needed a unit class to set out basic movement
functionality. Units have a queue of Vectors
corresponding to tile on the map and a queue of
points which is used to hold vectors coordinates of
points between tiles. When a unit completes all
moves in its points queues it then refreshes it with

the vectors corresponding with movement to the
next tile.

Implemented
Patrol section for
FR_AI
requirement

Patrol Patrols have rudimentary AI, after chasing a fire
truck and going off course they will path towards
their next node using an A* algorithm.

Implemented
multiple types of
patrols

Gunner, Bomber Added two different types of patrols, one which
attacks from a distance and another which
attempts to close the gap between itself and a
nearby fire truck before self-destructing to
damage it.

Implemented
FR_VIEW_TIME
R requirement

Additions to
GameScreen
class

Added the functionality of a downwards counting
timer on the main game screen which counts
down to the time of which the fire station will be
destroyed thus allowing no more repairs to fire
trucks. This fills the requirement of
FR_VIEW_TIMER.

Implemented
FR_PATROL_IN
CREASE
requirement

GameScreen When a fortress is destroyed, a patrol is spawned
on the nearest tile below it and the maximum
number of patrols is also incremented. This
ensures that as the player progresses in the game
the number of patrols increases.

Implemented
patrol spawning

GameScreen,
Patrol

When patrols are destroyed, new ones need to be
created in order to maintain difficulty. Therefore,
as long as there are less than the max number of
patrols a new one is spawned every 10 seconds.

Implemented
FR_PATROL_D
AMAGE and
FR_PATROL_A
TTACK
requirements

Gunner, Bomber Each patrol fulfills the requirement differently. The
gunner will attack the nearest patrol within its
range by using the same particle system that the
firetruck uses, this inflicts less damage than the
bombs of the fortress. The bomber, which also
deals damage through its attack function, inflicts a
large amount of damage when it is within a tile of
a fire truck.

Implemented
FR_PATROL_SI
GHT
requirement

Gunner, Bomber Patrols have a range parameter. For the gunner,
this directly affects the range of its attack.
However, the bomber targets trucks within its
viewDistance and moves towards them. This
implementation fulfills the FR_PATROL_SIGHT
requirement.

Implemented
FR_ACCESS_M

Additions to
GameScreen
class and creation

To fulfill the requirement of
FR_ACCESS_MINIGAME we made it so that
once the final fire station is destroyed the screen

INIGAME
requirement

of
MiniGameScreen
class

switches to the newly added MiniGameScreen
class which runs the minigame.

Implemented
FR_STATION_D
ESTROY
requirement

Additions to
GameScreen
class

FR_STATION_DESTROY requires that fire trucks
cannot be repaired or refilled when the fire station
is destroyed, this is implemented through removal
of the fire station entity in GameScreen no longer
allowing it to use any of its functionalities.

State Diagrams

We have implemented the state diagrams from assessment 1 architecture [1] and
tested these to make sure that some of the originally designed game systems run as
intended. The state diagram for application overview is tested by MAN_MINIGAME_WIN and
MAN_MINIGAME_LOSS_NOENGINES from assessment 3 testing [2] and
MAN_CONTROLS from assessment 2 testing [3]. The assessment 3 tests show full run
throughs of the game from start to either loss or victory including playing the minigame
hitting all of the states in the state diagram apart from the controls screen, and the
assessment 2 test is based around the movement between the main menu and controls
screen meaning we have tested all states and transitions between them for this diagram.

The fire truck destroyed state diagram is tested by MAN_GAME_OVER_LOSE from
assessment 2. In this test the game starts, all fire engines are killed, and once they are all
dead the user is taken to a game over screen from which they can return to the main menu.
This test runs through all states of this state diagram.

The fortress destroyed state diagram has been altered slightly to allow for our
minigame implementation as our minigame launches when the final fortress is defeated,
there is now an extra state between ‘checking total number of fortresses destroyed’ and
‘game won’ that plays the minigame, and moves onto win if the minigame is won. This
update is necessary for our design of the minigame as a final boss battle otherwise the
minigame would have to launch in the middle of the game, no longer making it feel like a
final boss that the player must defeat, which was our aim when designing the minigame.
Having this feeling of a final boss adds to the enjoyment of the game that, according to user
requirement UR_ENJOYABITILY, must be sufficient for the game’s target audience.

The ET patrols state diagram has been implemented and tested as shown by the
assessment 3 tests MAN_PATROL_FOLLOW and MAN_PATROL_ATTACK.
MAN_PATROL_FOLLOW shows the first stages of the state diagram, of the patrols
identifying fire trucks in their sight range and then stopping trying to attack them when they
are out of sight range and going back to standard patrolling. MAN_PATROL_ATTACK
shows the implementation of the patrols attacking and dealing damage and eventually
destroying the fire trucks, completing the state diagram.

Minigame Implementation

One of the largest parts of implementation required for assessment 3 was the
minigame. We decided to implement a turn based final boss battle between the fire truck and
the King of Kroy. For this we needed to implement a new Screen and a new Event Input
Handler that allows the user to select different moves and attack the alien.

If the player defeats the alien they are taken to a game win screen. If they lose
however they are returned to the main game, with the attacking fire truck destroyed, and the
final fortress respawned with low health to allow the player to attempt again to defeat the
boss and reward them for having more fire trucks alive at the end of the game by giving
them extra tries at the minigame.

A* algorithm

In order to efficiently move units across our map while ensuring they move along the
roads on our map we needed to implement a pathfinding algorithm. A* enables us to find the
shortest path between any two tiles on our map while avoiding obstacles which are stored in
an obstacle map in our game screen. It creates a map of nodes and assigns a weight to
each of these nodes equal to the weight of the distance from the start plus the estimated
distance between that node and the finish. It then iterates through these nodes to find the
shortest path between start and finish. We needed to use this algorithm when moving patrols
across our map as we wanted patrol paths to be randomly generated. By randomly
generating nodes which the patrols would path between we ensured that their movement
was complex while not needing to hard program every path thus creating more replayability
in the long run.

References
[1] Architecture - Assessment 1 [Online] Available:
https://gm-martin.github.io/assessment1/Arch1.pdf​ [Accessed: 16 Feb. 2020]
[2] End to end tests - Assessment 3 [Online] Available:
https://gm-martin.github.io/assessment3/EndToEndTests.pdf​ [Accessed: 16 Feb. 2020]
[3] Manual Tests - Assessment 2 [Online] Available:
https://gm-martin.github.io/assessment2/ManualTests.pdf​ [Accessed: 16 Feb. 2020]

https://gm-martin.github.io/assessment1/Arch1.pdf
https://gm-martin.github.io/assessment3/EndToEndTests.pdf
https://gm-martin.github.io/assessment2/ManualTests.pdf

