

Architecture
Mozzarella Bytes | Team 18

Assessment N°2

Daniel Benison

Elizabeth Hodges

Kathryn Dale

Ravinder Dosanjh

Callum Marsden

Emilien Bevierre

	
Concrete	UML	architecture:	

	 Diagram	1	

Diagram	1	shows	the	UML	class	diagram	for	our	concrete	architecture.	We	coded	our	game	in	Java	
(FR_CODE)	using	the	LibGDX	framework	(this	framework	can	be	used	on	other	devices	
(FR_SCALABILITY)).		Diagram	1	was	created	using	StarUML	and	a	StarUML	extension	[1]	to	reverse	Java	
code	to	UML.		In	diagram	1:	

	

	
As	seen	in	diagram	2,	ControlsScreen	(FR_CONTROLS),	GameScreen,	MenuScreen	(FR_MENU)	and	
GameOverScreen	(FR_GAME_OVER)	implement	the	LibGDX	interface	Screen,	
ControlScreenInputHandler,	GameInputHandler,	MenuInputHandler	and	GameOverInputHandler	
implement	the	LibGDX	interface	Application	listener	and	Kroy	extends	the	LibGDX	class	Game.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Diagram	3	shows	a	sequence	diagram	outlining	the	interaction	between	the	screens.	It	was	also	created	
using	StarUML.	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Class	A	 Class	B	 Class	C	 Class	D	

This	arrow	shows	a	directed	
association	meaning	A	has	
unspecified	navigability	and	B	
is	navigable	from	A	[2]	

This	arrow	shows	an	undirected	
association	meaning	both	ends	
of	the	association	have	
unspecified	navigability	[2]	

Class	E	 Class	F	

This	arrow	represents	a	
generalisation	where	in	OOP	
Class	E	inherits	from	Class	F	[3]	

Diagram	2	

Diagram	3	

Justification	of	concrete	architecture	
	

Using	a	tile	map:	This	was	so	we	could	build	a	collision	layer	which	we	could	use	to	check	that	a	truck	
stayed	on	the	road.	It	also	meant	that	we	could	render	the	entire	map	once	then	only	render	the	
entities	that	changed	each	frame	helping	reduce	lag	(NF_CONTROLS)		
	

Using	touchdown(),	touchDragged()	and	touchUp()	in	GameInputHandler:	We	decided	the	user	should	
click	on	a	truck	and	draw	the	route	that	the	truck	should	follow	(instead	of	using	arrow	keys	or	writing	
an	algorithm	for	the	trucks	movement)	so	the	user	would	have	more	control	and	these	controls	would	
work	on	other	devices	(UR_SCALABILITY).	touchDown()	is	called	when	a	user	touches	the	screen	and	it	
checks	a	user	has	clicked	on	a	truck,	when	the	user	“draws”	a	trucks	path	touchDragged	is	called	which	
calls	addTileToPath()	in	FireTruck	adding	the	tile	to	the	trucks	trailPath	if	the	player	has	drawn	a	
continuous	path	on	the	road.	Once	the	user	stops	touching	the	screen	touchUp()	is	called	which	sets	the	
moving	to	true	so	the	truck	starts	to	follows	the	path.	
	

Path	in	FireTruck:	GameInputHandler	as	described	above	adds	the	tiles	that	the	player	has	drawn	to	
into	the	trucks	trailPath,	however	if	each	frame	you	rendered	the	truck	to	tiles	present	in	trailPath	it	
would	look	like	the	truck	was	jumping	from	tile	to	tile.	Hence	we	used	a	Queue	called	path	which	
contains	intermediate	values	between	each	tile	that	the	truck	would	be	rendered	to	which	makes	it	
look	like	the	truck	is	moving	smoothly	between	tiles.	A	truck	with	slow	speed	generates	more	
intermediate	values	between	tiles	hence	it	takes	longer	to	move	from	tile	to	tile	making	it	look	slower.		
	

TrailPath	in	FireTruck:	Used	in	drawPath()	to	render	a	visual	representation	of	the	trucks	path.	
	

FireTruckType	and	FortressType	enumerations:	These	were	added	so	multiple	objects	of	the	same	type	
could	be	created	and	they	would	not	have	to	store	the	same	values.	Also,	creating	types	with	hard	
coded	values	makes	it	easier	to	check	that	the	game	is	not	too	easy	or	too	difficult	whereas	using	
randomly	created	values	may	make	the	game	too	easy	in	some	instances	and	too	hard	in	others.	
	

Bomb	class:	This	is	how	the	fortress	attacks	the	trucks	(FR_FORTRESS_ATTACK).	A	fortress	can	have	
multiple	bombs	which	it	stores	in	an	arrayList	bomb.	A	bomb	is	automatically	created	by	a	fortress	
(FR_AI)	once	a	truck	is	within	the	fortresses	range	and	a	predefined	amount	of	time	(delay	in	
FortressType)	has	passed	since	the	fortress	attacked	that	truck.	The	bomb’s	start	position	is	the	fortress	
and	its	target	position	(generated	in	generateBombTarget())	is	either	the	trucks	position	or	a	position	
near	the	truck,	this	adds	an	element	of	skills	as	the	player	has	to	avoid	the	bombs	(UR_ENJOYABILITY).	
	

WaterParticle	Class:	How	a	truck	“floods”	a	fortress.	While	keydown()	in	GameInputHandler	register	
that	the	user	is	pressing	‘A’	and	a	fortress	is	within	the	trucks	range	attack()	in	FireTruck	is	called	each	
frame	from	GameScreen	instantiating	a	Water	Particle	and	adding	it	to	the	trucks	spray	if	the	truck’s	
reserve	>	0.	Each	render	GameScreen	calls	WaterParticle	isHit(),if	a	water	particle	hits	a	fortress	
fortressDamage()	in	FireTruck	is	called	decreasing	the	fortresses	HP	by	the	trucks	AP.	
	

Input	Handlers:	Each	screen	has	an	input	handler	which	implements	the	LibGDX	interface	
InputProccessor	(see	diagram	2);	this	allows	screens	to	responds	to	the	player’s	input.	We	used	the	
LibGDX	interface	because	it	is	less	likely	to	contain	bugs	then	if	we	tried	to	implement	it	ourselves	
	

Screens:	Our	game	includes	a	menu	(FR_MENU),	game,	controls	(FR_CONTROLS)	and	game	over	screen	
(FR_GAME_OVER).	Diagram	3	shows	the	interactions	between	screens.	The	only	screen	not	disposed	of	
when	the	screen	changes	is	the	game	screen	when	the	controls	screen	is	clicked,	this	is	so	the	user	can	
resume	their	game	when	they	exit	the	control	screen.		

	
How	the	concrete	architecture	builds	from	abstract	architecture	

	
	

Removed	Entity	class:	In	our	abstract	architecture,	we	had	an	Entity	class	containing	an	entity’s	location	
that	Fortress,	FireTruck,	Station	and	Patrol	inherited	from.	Instead	we	now	pass	the	location	of	the	
entity	into	the	entity’s	constructor	from	GameScreen	as	we	decided	there	are	not	enough	shared	
methods	between	the	entity	classes	to	warrant	having	an	abstract	entity	class.		
	

Replaced	Abstract	Screen	class	in	abstract	architecture	with	Screen	interface	from	LibGDX:	All	screens	
use	the	Screen	interface	(see	diagram	2)	We	decided	to	use	an	existing	interface	as	it	saves	time	and	is	
less	likely	to	contain	bugs	then	if	we	implemented	a	solution	ourselves.	
	

Made	ControlsScreen	accessible	from	GameScreen:	to	increase	UR_PLAYABILITY	the	control	screen	is	
now	accessible	from	the	game	and	menu	screen;	before	it	was	only	accessible	from	menu	screen.	
	

Added	a	Bomb	class:	Provides	a	visual	way	for	the	player	to	see	the	fortress	is	attacking	the	truck.	
Before	damage()	would	have	been	called	every	frame	causing	continual	damage	to	the	truck	whereas	
now	a	bomb	is	only	generated	after	a	predetermined	number	of	seconds	(different	for	each	fortress)	
has	passed	and	only	causes	damage	if	it	lands	in	the	same	tile	as	a	truck.		
	

Added	a	GUI	class:	This	renders	and	determines	the	actions	for	the	control,	pause,	sound	
(UR_SOUND_OFF)	and	home	button	in	the	game	screen.		
	

Patrol	Class	and	MiniGameScreen	removed:	Removed	as	they	are	not	in	required	for	assessment	2	
	

Added	InputHandlers,	WaterParticle	Class,	FireTruckType	and	FortressType	enumerations:		See	above	
for	justifications	
	

How	concrete	architecture	implements	the	requirements	
	
	

Requirements	 How	concrete	architecture	fulfils	requirement	
UR_WIN	/	
UR_LOSE	

When	GameScreen	calls	spawn()	the	FireStation	spawns	a	truck	and	calls	
addFireTrucks()	which	adds	1	to	activeFireTrucks	in	GameState;	when	a	fortress	is	
destroyed	GameScreen	calls	addFortress()	which	adds	1	to	fortressesDestroyed	in	
GameState.	hasGameEnded	(game:	Kroy)	is	called	each	frame	and	calls	
endgame(boolean	playerWon,	game)	with	true	if	activeFireTrucks	is	0	or	false	if	
fortress	destroyed	=	3,	this	triggers	game	over	screen	ending	the	game.	

UR_REPAIR	 Each	render	GameScreen	calls	restoreTrucks()	in	FireStation.	If	a	truck	is	on	one	of	
its	repair	bays	restoreTrucks	calls	refill	(float),	repair(float)	in	FireTruck	which	
updates	the	trucks	reserve	and	HP	by	the	respective	float	amount.	

UR_	
FIRETRUCKS	

The	constructor	of	GameScreen	calls	spawn(FireTruckType)	twice	to	instantiate	2	
trucks.	The	spawn	method	increments	activeFireTrucks	in	GameState	and	calls	the	
spawn	method	in	FireStation	which	adds	the	truck	to	its	list	of	trucks.	

UR_	
FORTRESS	

The	constructor	of	GameScreen	instantiates	three	fortresses,	one	from	each	
FortressType	and	adds	them	to	the	arrayList	of	fortresses	in	GameScreen.	

UR_PLAYER	 All	methods	in	the	InputHandler	classes	can	only	deal	with	one	input	at	a	time	
meaning	only	one	player	can	play.	

UR_TRUCK_	
SPACE	

Each	frame	the	update	method	in	GameScreen	calls	checkForCollisions()	in	
FireStation.	This	method	iterates	through	the	arrayList	of	trucks	checking	that	the	
next	tile	in	their	trailPath	is	not	occupied	or	going	to	be	occupied	by	another	truck.	
If	there	is	a	collision	this	method	calls	resetTrucks()	which	stops	the	trucks	and	
moves	them	to	adjacent	tiles.	

FR_FIRE_	
TRUCK	

Each	FireTruck	has	a	FireTruckType	which	contains	a	truck’s:	AP,	max	HP,	max	
reserve,	range,	speed.	There	is	one	type	for	each	truck.		

FR_	
FORTRESS	

Each	Fortress	has	a	FortressType	which	contains	a	fortress’:	AP,	max	HP,	range.	
There	is	one	type	for	each	fortress.		

FR_	
MOBILITY	

A	trucks	movement	is	determined	by	input	to	GameInputHandler	from	the	user.	
See	previous	page	for	further	explanation.	

FR_TRUCK_	
ATTACK	

A	truck	attacks	a	fortress	while	there	is	a	fortress	within	the	truck’s	range	and	the	
user	is	pressing	‘A’.	See	previous	page	for	further	explanation.	

FR_FORTRESS	
_ATTACK/	
FR_AI	

If	a	truck	is	within	a	fortresses	range	attack()	in	Fortress	is	called	from	GameScreen.	
This	instantiates	a	bomb	and	adds	it	to	the	fortress’	arrayList	bombs.		Each	render	
GameScreen	calls	Bomb	isHit(),	if	a	bomb	hits	a	fortress,	damage()	in	Fortress	is	
called	from	GameScreen	decreasing	the	trucks	HP	by	the	fortress’	AP.			

References	
	
[1]	 MK.Labs.Co,	StarUML	Java	extension,	Accessed	on:	30.12.2019		[Online]	Available	at:	

http://staruml.io		
[2]	 K.	Fakhroutdinov,	UML	association,	UML-diagrams.org,	2019,	Accessed	on:	27.12.2019.	

[Online]	Available	at:	https://www.uml-diagrams.org/association.html		
[3]	 M.Fowler,	UML	Distilled	Third	Edition,	Massachusetts:		Booch	Jacob	Rumbaugh,	2003.	

Accessed	on:	27.12.2019.	[Online]	Available	at:	http://ce.sharif.edu/courses/96-
97/2/ce418-1/resources/root/Books/UMLDistilled.pdf

	 	
	
	

