

Requirements
Mozzarella Bytes | Team 18

Assessment N°1

Daniel Benison

Elizabeth Hodges

Kathryn Dale

Ravinder Dosanjh

Callum Marsden

Emilien Bevierre

Requirements

Requirements engineering process: Requirements engineering (RE) is the process of

developing a software specification that communicates the systems needs of the customers

to the developers [1]. Requirements should abide by the IEEE standard of being [2]:

traceable, feasible, singular, verifiable, consistent, unambiguous, complete, correct, and

affordable (for definitions see website [3]). The elicitation, analysis, documentation and

validation phases of the requirements engineering process [4] are needed to ensure that the

product will best fulfil the client’s needs.

How requirements were elicited: To elicit the client’s “real” requirements, which often differ

from their “stated” requirements [5], we used a combination of techniques. Firstly, we used

the traditional technique of analyzing the initial brief for “stated” requirements that were

ambiguous or imprecise. From this we designed open and closed-ended questions aimed at

clarifying and eliciting new requirements [6]. These questions were then discussed with the

main stakeholder to help discover the “real” requirements. After analysing the requirements

we clarified those that did not meet the IEEE standard in an interview with the stakeholder.

How requirements were validated: To validate the requirements they were systematically

peer reviewed by members of the group to ensure the team is confident they can implement

them and there are no conflicting requirements. The documented requirements were then

walked through with the stakeholder. Necessary changes were discussed which often

restarted the RE process; this continued until both parties agreed on the requirements. The

phase is necessary to ensures the requirements are feasible and that they define the system

the client really wants [1].

Why requirements are presented as they are: In accordance to the IEEE standard [2]

requirements should have a: unique identifier, priority, source, type, assumed difficulty and

risk. The requirements are split into three tables dependent on their type. The user

requirements table states what services the user expects the system to provide and is

written in natural language to be able to be understood by the customers [1]. The functional

requirements table describes the system’s functions in more detail while the non-functional

requirements table include system properties constraints under how the system must

operate [5]. To be able to verify a non-functional requirement there is a fit criteria column

which provides a means to measure whether that requirement has been met.

To abide by the IEEE standard each requirement has a relevant unique identifier (ID). This

allows the non-functional and functional requirements to be traced back to the user

requirements. Each table also has a source column to state whether that requirement was

elicited from the product brief or a stakeholder interview and a priority column where the

requirements are ranked according to whether it shall, should or may be met. To indicate the

perceived difficulty of implementing a particular requirement a colour code system is used

where green is easy, amber is nominal and red is difficult.

Requirements change management: There are four stages to manage requirements: log

change status, evaluate, authorise and implement the changes [1]. We have a change

management log [7] to record changes (on website [3]), the changes will be evaluated as a group

and authorised by the project owner before taking stages to implement the new requirement.

Single statement of need ​: Build a single-player game that involves moving fire engines
between the Fire Station and the ET fortresses, avoiding ET patrols on the way, and
attacking ET fortresses when the fire engines’ water cannons are within shooting range.

Use case:

● Name: “Win”
● Context: The user destroys all fortresses before all of their fire trucks have been

destroyed
● Primary Actor: The user
● Stakeholders: Us - with our interests being the user enjoying the game
● Precondition: The system is working as intended
● Minimal Postcondition: The user destroys all the fortresses
● Trigger: The user destroys the last fortress
● Main Success Scenario: 1.The user destroys the last fortress

● 2.The win state is displayed
● 3.The game ends
● 4.Goes back to the game menu

● Secondary scenarios:
● 2.1 The game continues to run as if the end isn’t reached, e.g

the
● fire station timer continues to run so the fire station is destroyed
● 4.1 The game starts again

● Success Postcondition: The user enjoyed the game and did not find it too easy

User requirements

User ID Description Source Priority

UR_WIN The player wins if they flood the ET
fortresses before the ET fortresses and ET
patrols destroy all of the player’s fire trucks

Product brief Shall

UR_LOSE The game is lost if all the player’s fire trucks
have been destroyed before the player has
flooded all of the ET fortresses

Product brief Shall

UR_MINI_GAME The game should include a minigame Product brief Should

UR_MINI_
GAME_THEME

The minigame should be different in style,
but aligned to the theme of the main game

Product brief Should

UR_REPAIR Fire trucks can be repaired and refilled at
the fire station

Product brief Should

UR_FIRE_
TRUCKS

There must be at least four fire trucks Product brief Shall

UR_FORTRESS There must be at least six fortresses Product brief Should

UR_
SCALABILITY

The game should be able to be played on
other platforms

Product brief May

UR_PATROLS There should be ET patrols that the user
aims to avoid

Product brief Should

UR_DESTROY
_STATION

At a point in the game the fire station
should be destroyed

Product brief Should

UR_ENJOYABILITY The game should be enjoyable to play Product brief May

UR_PLAYABLE The game must be playable
Dependent on environmental assumptions
(see bottom of document)

Product brief Shall

UR_PLAYER The game must be a single-player game Product brief Shall

UR_CODE The game must be coded in Java Interview Shall

UR_PC It must be a PC game Interview Shall

Functional requirements

ID Description Source Priority User ID

FR_FIRE_
TRUCKS

Each fire truck must have a unique
spec in terms of its speed, amount of
damage it can take before being
destroyed, the volume of water it can
carry, the range and delivery rate of
its water cannon

Product
brief

Shall UR_FIRE_
TRUCKS

FR_
FORTRESS

Each ET fortress must have a
unique spec in terms of the range of
its defensive weapons, the amount
of damage these weapons can deal
to Fire trucks over a period of time,
and the volume of water it takes to
flood

Product
brief

Should UR_
FORTRESS

FR_WATER Over time the amount of water
needed to flood a fortress should
increase

Interview Should UR_WIN

FR_
MOBILITY

The user can move the fire trucks.
Patrols and fire engines should be
mobile; fortresses should be
immobile

Product
brief

Shall UR_
ENJOYABILI
TY

FR_AI The ET patrols and ET fortresses
are controlled by the computer AI

Product
brief

Shall UR_
PLAYER

FR_TRUCK_
ATTACK

Fire trucks can flood ET fortresses Product
brief

Shall UR_FIRE_
TRUCKS

FR_PATROL_
ATTACK

ET patrols can attack trucks Product
brief

Shall UR_
PATROLS

FR_FORTRESS
_ATTACK

ET fortresses attack trucks Product
brief

Shall UR_
FORTRESS

FR_VIEW
_TIMER

The player must see the amount of
time until the fire station is destroyed

Interview Should UR_
DESTROY
_STATION

FR_PATROL
_INCREASE

The number of patrols should
increase throughout the game

Interview Should UR_
PATROLS

FR_PATROL
_DAMAGE

Patrols should damage fire trucks in
close proximity to them but to a
lesser extent then the fortresses

Interview Should UR_
PATROLS

FR_PATROL
_SIGHT

Patrols should chase fire trucks that
are within their range of sight

Interview May UR_
PATROLS

FR_ACCESS
_MINIGAME

The mini game should be accessed
from within the main game

Interview Should UR_MINI
_GAME

FR_
CONTROLS

There should be a screen that
explains the controls

Interview May UR_
PLAYABLE

FR_
STATION
_DESTROY

Fire trucks cannot be repaired or
refilled after the fire station has been
destroyed

Product
brief

Should UR_
DESTROY
_STATION

Non-functional requirements

ID Description Rational Fit criteria User ID

NF_PC The game must
be playable on
engines/things
that can be
played on PC

Product brief The game must use
libraries /function
that could be used
on other platforms

UR_
PLAYABLE

NF_
RESPONSE

The game must
respond quickly
to user input

Improved user
experience

Average response
time >1 second,
maximum response
time >2 second

UR_
ENJOYABILITY

NF_
CONTROLS

The controls
should be easy
to learn

Prospective
students should
be able to play
the game

The player should
be able to grasp the
controls in under 2
minutes

UR_
ENJOYABILITY

Environmental assumptions:​ 1) The player is assumed to be playing on a modern computer
that is of reasonable specifications. 2) The user will have standard hardware such as a
keyboard and mouse. 3) The user will have java installed to run the program.

Risks​: The main risks relevant to the requirements are R4 & R7 (see risk assessment table in
risk management section).

References

1 I. Sommerville, Software Engineering, 9th ed. Boston, Pearson, 2011

2 ISO/IEC/IEEE, “Systems and Software Engineering – Life Cycle Processes –
Requirements Engineering”, IEEE 29148-2011, 2011, Accessed on: 17.10.19
[Online] Available at: https://standards.ieee.org/standard/29148-2011.html

3 Mozzarella Bytes, “Requirements Additional Documents,” 2019 [Online]
Available at: https://emhodges.github.io/SEPR-
game/assessment1/overflow/index.html#user-requirements

4 N. G. Darwish, S. Megahed, “Requirements Engineering in SCRUM
framework”, International Journal of Computer Applications, vol. 149, no. 8,
pp.24-29, 2016, Accessed on: 19.10.19 [Online] Available at:
https://pdfs.semanticscholar.org/8bb4/8371c272da4d7c9d28cc75dd781d5ddb4
810.pdf

5 R. R. Young, The Requirements Engineering Handbook, Norwood, Artech
House, 2004

6 R.R Young, “Recommended Requirements Gathering Practice”, The Journal of
Defense Software Engineering, pp.9-12, 2002, Accessed on:127.10.19 [Online]
Available at:
https://pdfs.semanticscholar.org/2cf0/7cba67d0114743fcc9e626f5aab9ac7b9fc
b.pdf

7 Centres for Disease Control and Prevention, “Change Management log”, 2019,
Accessed on: 12.11.19, [Online] Available at:
https://www2a.cdc.gov/cdcup/library/templates/CDC_UP_Change_Management_Log_
Template.xls

